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Abstract

Accurate prediction of the distributions of indoor air¯ow is very important for designing a comfortable and
healthy indoor environment. This paper uses a large eddy simulation (LES) program with a ®ltered dynamic subgrid

scale model to calculate natural, forced and mixed convection ¯ows in rooms. The predicted air velocity, air
temperature and turbulence distributions agree reasonably well with the corresponding experimental data. The LES
has great potential for the simulation of indoor air¯ow. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

To design a comfortable and healthy indoor en-
vironment requires information about the distributions

of air velocity, air temperature, relative humidity, con-
taminant concentrations, and turbulent quantities.
However, most indoor air¯ows are complicated, and

are driven by pressure gradient and thermal buoyancy.
Typical indoor air¯ow includes natural convection,
such as winter heating by a baseboard convector,

forced convection, such as free cooling in spring
seasons, and mixed convection, such as summer cool-
ing with an air conditioning unit. It is very challenging
to predict indoor air¯ow.

1.1. Approaches available for indoor air¯ow studies

Two common approaches are available to study

indoor air¯ow: experimental measurements and com-

puter simulation. The experimental approach normally

uses a full-scale environmental chamber to simulate an

indoor space and to isolate the space from the external

world. The requirement of a full-scale chamber is due

to scaling problems for non-isothermal ¯ow. The iso-

lation allows for the creation of controllable thermal

and ¯uid boundary conditions. However, the full-scale

environmental chamber is expensive, and a measure-

ment may take many months to complete.

The other research approach is to use compu-

tational-¯uid-dynamics (CFD) to calculate indoor air-

¯ow. Considerable success has been achieved by using

the CFD for indoor air¯ow, although there are still

some di�culties as reviewed by Chen [1]. The CFD is

further divided into three types: direct numerical simu-

lation (DNS), Reynolds averaged Navier±Stokes

(RANS) equation modeling, and large eddy simulation

(LES).

The DNS solves the highly reliable Navier±Stokes

equations without approximations. The method

requires a grid resolution as ®ne as the Kolmogorov

microscale. This requires a grid resolution of around
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1013 for air¯ow in a room. Current supercomputers

can have a grid resolution of 107. Therefore, the DNS
cannot be used to study indoor air¯ow under a realis-
tic condition.

The RANS solves ensemble-averaged Navier±Stokes
equations by using turbulence modeling. The most
widely used turbulence model is the standard k±e
model [2]. Chen [3,4] compared ®ve di�erent k±e
models and three Reynolds stress models for the pre-
diction of natural, forced, and mixed convection ¯ows

in rooms, as well as an impinging jet ¯ow. The per-
formance of those models is generally poor. One
model can perform very well for one type of ¯ow, but
very poorly for another type. None of the models

tested is universal. Hence, it is very di�cult for a
designer to select an appropriate turbulence model,
since most of the designers do not know very much

about turbulence modeling. In addition, many turbu-
lence models, such as the Reynolds stress models, can
be mathematically complex and numerically unstable.

Furthermore, they cannot calculate the power spec-
trum of air¯ow, that is a very interesting thermal com-
fort parameter.

The LES developed in 1963 by Smagorinsky [6] for
meteorological applications and in 1970s by Deardor�
[5] for industrial applications assumes that turbulent
motion could be separated into large-eddies and small-

eddies. The separation between the two does not have
a signi®cant e�ect on the evolution of the large-eddies.
The LES solves the large eddy motion by a set of ®l-

tered equations governing the three-dimensional, time
dependant motions. Turbulent transport approxi-
mations are used for small-eddies, and the small-eddies

are modeled independently from the ¯ow geometry.

The success of the LES stems from the fact that the

main contribution to turbulent transport comes from
the large-eddy motion. Since the LES solves time-
dependent ¯ow, it can provide detailed information on

turbulence, such as three-dimensional instantaneous
velocity. The LES can also provide the information
about power spectrum of air¯ow.

1.2. Subgrid scale models for large-eddy simulation

The key to successfully predicting indoor air¯ow by
the LES is to accurately represent the unresolved sub-
grid-scale (SGS) motion. The most widely used SGS
model is the Smagorinsky model (SM) [6]. However,

the model has some notable drawbacks including (a)
the requirement of a model coe�cient C that is ¯ow
dependent; (b) incorrect prediction of the asymptotic

behavior near a wall, (c) no permission of SGS energy
backscatter to the resolved scales, and (d) problem
with transition of turbulence ¯ow prediction. Examples

of the SM performance for di�erent types of ¯ow can
be found [5].
Germano et al. [7] and Lilly [8] proposed a dynamic

subgrid scale model (DSM) to solve the problems as-
sociated with the SM by computing directly the model
coe�cient with the information from the resolved
scales. In other words, the model coe�cient can be

obtained as a function of ¯ow domain and time. This
model can also predict correctly the asymptotic be-
havior near a wall, and permits energy backscatter

from small scales to large scales. The DSM has been
successfully used in some simple ¯ows, such as channel
¯ow [7], but the DSM still needs improvements for

complex ¯ows. For example, the model coe�cient

Nomenclature

Ar � bghinDT0

U 2
in

Archimedes number
C dynamic subgrid scale model coef-

®cient

CS Smagorinsky model coe�cient
D room depth (mixed convection case)
G�x i � ®lter function

g gravitational acceleration
H room height
L room width

Pr molecular Prandtl number
PrSGS subgrid scale Prandtl number
�P grid ®ltered pressure
Ra Rayleigh number

T temperature
ui velocities
�ui grid ®ltered velocities

~ui test ®ltered velocities
v velocity vector
W room depth (forced convection case)

x, y, z three components in Cartesian coordi-
nates

x i Cartesian space coordinate

b thermal expansion coe�cient
y temperature
�y grid ®ltered temperature
~y test ®ltered temperature
DT dimensionless time step
Dt time step
ÅD grid ®lter size
ÄD test ®lter size
n kinematic viscosity
x vector in x direction
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computed has a volatile ¯uctuation, as found in jet
¯ow [9] and ¯ow around a square cylinder [10].

Although averaging the model coe�cient over the
homogeneous direction can often reduce the ¯uctu-
ation [7], it is di�cult, if not impossible, to ®nd the

homogeneous direction in a complex indoor air¯ow.
Another method is to average the coe�cient locally,

such as by volume averaging [11]. The method can

e�ectively reduce the ¯uctuation for low Reynolds
number cavity ¯ow, but our experience shows that the
method does not work for high Reynolds number

indoor air¯ow.
Ghosal et al. [12] proposed a fully localized model

based on a constrained variation approach. The
approach solves Fredholm's integral equation of a sec-

ond kind and is very complicated. There is no evidence
that the model will perform much better for complex
indoor air¯ow.

Another approach by Meneveau et al. [13] used a
Lagrangian dynamic model. This model is suitable for
inhomogeneous ¯ows and the results are encouraging.

However, it has introduced an additional parameter,
the Lagrangian averaging time, which needs to be pre-
scribed. Additional tests are required to establish how

to calculate this parameter [14].

1.3. Large eddy simulation of indoor air¯ow

The LES has been used to study indoor air¯ow
recently. Early work is for force convection [15,16] and

mixed convection [17] in a room. The computed results
show that the LES is very powerful and encouraging.
One of the investigations [16] used SM for sub-grid

scale motion. The studies showed that the computed
velocity depends strongly on the model coe�cient. The
coe�cient has to be tuned in order to obtain the best
®t with the corresponding experimental data. If the

LES is used as a design tool and no experimental data
is available beforehand, there is no way to tune the
model coe�cient. Davidson and Nielson [15] used the

DSM and a very ®ne numerical grid. However, their
computed results deviated from the experimental data.
The discrepancies may be attributed to the average of

the model coe�cient for the DSM in span-wise direc-
tion that may not be homogeneous. Murakami et al.
[17] also averaged the model coe�cient for the DSM
in a homogeneous direction. The averaging method

cannot be applied to indoor air¯ow without a homo-
geneous direction.
Therefore, it is necessary to solve the problem of

how to average the coe�cient in the DSM for indoor
air¯ow without a homogeneous direction. Our investi-
gation proposes a new simpli®ed and localized coef-

®cient for the DSM with a ®ltering technique, referred
to as ®ltered dynamic subgrid scale model (FDSM).
The FDSM is demonstrated by applying it to study

forced, natural, and mixed convection ¯ows indoors.
The corresponding experimental data available from

the literature and the computed results with the SM
will be used for comparison. The aim of the study is to
examine if the FDSM can correctly predict indoor air-

¯ow.

2. Governing equations and models

2.1. Filter function and governing equations

The LES separates small-eddies from large-eddies

with a ®lter in order to make the turbulence ¯ow
solvable. For one-dimensional ¯ow, the ®ltered velocity
is:

ui �
�
G
ÿ
x, x 0

�
ui�x 0 � dx 0 �1�

where G�x, x 0 � is a ®lter function. The ®lter function is

large only when xÿ x 0 is less than the ®lter width, a
length scale over which averaging is performed. The
¯ow eddies larger than the ®lter width are ``large-

eddies'' and smaller than the width are ``small-eddies''.
In the physical spaces, usually a box ®lter is used,

i.e.:

G�x i � �

8>>>><>>>>:
1

Di

�
jx ijRDi

2

�
0

�
jx ij > Di

2

� , �2�

With the ®nite volume method, it seems natural to de-
®ne the ®lter width, Di, as an average over a grid

volume. For a three-dimensional ¯ow,

D �
 Y3

i�1
Dx i

!1=3

:

Applying the ®lter to the Navier±Stokes equations for
an incompressible ¯ow, the equations become:

@ui
@ t
� @

@x j

ÿ
ui � uj

�
� ÿ1

r
@ �P

@x i
� n

@ 2ui
@x i@x j

ÿ @tij
@x j
� gjb

ÿ
�yÿ y0

�
dij �3�

where the anisotropic part of the subgrid Reynolds
stresses are

tij � uiuj ÿ ui � uj �4�

The ®ltered continuity equation is:
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0

@ui
@x i
� 0 �5�

and the ®ltered energy equation is:

@ �y
@ t
� @uj

�y
@x j
� @

@x j

 
n
Pr

@ �y
@x j

!
ÿ @hj
@x j

�6�

where the subgrid heat ¯uxes are

hj � ujyÿ uj �y �7�

The subgrid Reynolds stresses and heat ¯uxes are
unknown and need to be modeled.

2.2. Smagorinsky model (SM)

The simplest subgrid model was the one proposed
by Smagorinsky [6]:

tij � ÿ2nSGSSij �8�

where

nSGS �
ÿ
CS

ÅD
� 2ÿ

2Sij � Sij

�1=2
,

Sij � 1

2

�
@ui
@x j
� @uj
@x i

� �9�

and

hj � aSGS

@ �y
@x j

, and aSGS � nSGS

PrSGS

�10�

where, j �Sj � �2Sij � Sij�1=2, C � C 2
S , CS � 0:1±0:25 [17],

and PrSGS � 0:5 [17].
In near wall region, the turbulence becomes insigni®-

cant and the above subgrid scale model does not work,
therefore, the Van Driest damping function is used:

D � ÿ1ÿ exp
ÿÿ y�=25

���DxDyDz�1=3 �11�

where y� is the dimensionless distance from the wall.

2.3. Dynamic subgrid scale model (DSM)

The model coe�cient C in SM depends on ¯ow
type. It even varies in di�erent parts of a ¯ow domain.
Therefore, the model coe�cient is not an ad-hoc con-

stant. With a constant C, the predicted results deviate
very much from the DNS data as shown in [7]. Hence,
the constant C should be expressed as a function of

time and ¯ow type. Germano [7] and Lilly [8] proposed
a dynamic subgrid scale model (DSM). The DSM cal-
culates the C by relating the subgrid scale Reynolds

stresses to two di�erent sizes of ®lters. Since the Rey-
nolds stresses vary with time and location, the C is
therefore a function of time and location.

The DSM uses an explicit test ®lter, ~G, with a ®lter
width of ÄD� ÄD > ÅD� to determine the turbulent stress on

the ~G ®lter:

Tij �guiuj ÿ ~�ui ~�uj �12�

The ®rst term on the right-hand side of the equation
cannot be determined directly, as that in Eq. (4). How-
ever, the term can be eliminated by substituting Eq.
(12) from the Eq. (4) with a test ®lter:

Tij ÿ ~tij � Lij �13�

where

Lij �g�ui �uj ÿ ~�ui ~�uj �14�

The resolved turbulent stresses in Eq. (14), Lij, can be
calculated explicitly. With the de®nition of Smagor-
insky model, the stresses of the test ®lter, Tij, and that

of the grid ®lter, tij, the model coe�cient can be calcu-
late by Eq. (12) as

C � hLijMiji
hMijMiji �15�

where

Lij � �ui �uj ÿ ~�ui ~�uj �16�

and

Mij �
�
2 ÄÅD

2j ~�Sj ~�Sij ÿ 2 ÅD
2j �Sj �Sij

�
�17�

with

~�Sij � 1

2

 
@ ~�ui
@x j
� @ ~�uj
@xi

!
, j ~�Sj �

�������������
2 ~�Sij

~�Sij

q
�18�

The above equations use a second ®lter, the test ®lter
� ~ ), introduced by Germano [7]. The test ®lter width ÄD
is larger than the grid ®lter width ÅD� ÄÅD � 2:0 ÅD� as
suggested by Germano [7].
The braces h i denote an average over the homo-

geneous directions that can stabilize calculation. Since
the C is not a constant, the model is referred to as a
DSM.

Similarly, Lilly [8] proposed to determine the Prandtl
number of the dynamic subgrid scale by:

1

PrSGS

� 1

C

PjRj

R 2
j

�19�

where

Pj � f
�uj �yÿ ~�uj

~�y, �20�
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0
and

Rj � 2 ÄÅD
2j ~�Sj @

~�y
@xj
ÿ 2 ÄÅD

2j �Sj @
�y

@x j
�21�

This model has successfully predicted simple channel
¯ow. The averaged formulation e�ectively stabilizes at

least one homogeneous direction.

2.4. Filtered dynamic subgrid scale model (FDSM)

We found a large ¯uctuation of the DSM coe�cient
in inhomogeneous indoor air¯ow. This may be attribu-
ted to the high Reynolds number in the indoor air¯ow,

as the coe�cient depends on the turbulent scale and
¯ow type. Unfortunately, it is impossible to ®nd a
homogeneous ¯ow direction to make a mean. Without

a mean, the large ¯uctuation makes the computation
unstable and di�cult to converge.
In order to apply the DSM to such a ¯ow, we pro-

pose a ®ltering approach, since the ®ltering technique
cannot only reduce the ¯uctuation but also reserve
local characteristics of the model coe�cient. The
approach assumes a statistical homogeneity in every

®ltered grid space. The next section discusses the ®lter-
ing technique.
The DSM calculates the model coe�cient by relating

the subgrid scale Reynolds stresses to two di�erent
sizes of ®lters. The error associated with a model tmodel

ij

is given by

eij � Lij ÿ
�
T model

ij ÿ ~tmodel
ij

�
�22�

For the Smagorinsky model, the error equation can be
written by [12]

eij � Lij ÿ CMij �23�

The present investigation uses the least-square
approach to obtain the localized coe�cient, the C in

Eq. (23), as suggested by Lilly [8]. At any given point
in a space, x, the eij is a function of the C but depends
on the x: In order to obtain an optimal C, the eij must

be integrated over the entire ¯ow domain. The inte-
gration is in consistency with the least-square approach
that requires the optimization over the entire ¯ow
domain. Since the square of the residual, eijeij, may

have a locally violent change, the eijeij should be inte-
grated in the entire ¯ow domain with a smooth func-
tion. Thus, the integrated square of the error function,

Eij�C �, is

Eij�C� �
�
Gf

ÿ
x, x 0

�
eij�x 0 �eij�x 0 � dx 0 �24�

Substitute Eq. (23) into Eq. (24) to yield:

Eij�C� �
�
Gf

ÿ
x, x 0

�ÿ
Lij ÿ CMij

� 2
dx 0 �25�

Since the least square condition for the Eq. (25) is
@Eij�C�
@C � 0, then the optimal model coe�cient C is

obtained as:

C �

�
Gf

ÿ
x, x 0

�
LijMij dx 0�

Gf

ÿ
x, x 0

�
MijMij dx 0

�26�

The smooth function G�x, x 0� should be chosen for the

entire ¯ow domain and may depend on the turbulent
scales. Although the smooth function can be in many
forms, a box ®lter function (grid ®lter) may be most

convenient. Then

C � LijMij

MijMij

�27�

If the model coe�cient is ®ltered with only one grid ®l-
ter (Eq. (27)), this procedure is very similar to the
local volume averaging method. Our calculations show

that the ®ltered coe�cient still ¯uctuates a lot. There-
fore, we use a two-time ®lter (Eq. (28)). Eq. (28) is an
ad-hoc approach referred as a ®ltered dynamic subgrid

scale model (FDSM).

C �
 
LijMij

MijMij

!
�28�

Eq. (28) is the new model. The ®ltered model coef-
®cient calculated by Eq. (28) can be negative locally. A
negative C indicates a negative eddy viscosity and

implies a ¯ow of energy from small scales to the
resolved scales or backscatter, according to Piomelli et
al. [18]. However, the negative C can also lead to nu-

merical instability. In order to avoid the instability, the
present investigation uses C � max (0.0, Eq. (28)).
Since the Prandtl number of dynamic subgrid scale

does not ¯uctuate very much, the present investigation
uses:

1

PrSGS

� 1

2C

PjRj

�R
2

j

�29�

If Rj < 10ÿ4, Rj � 10ÿ4 for numerical stability.

3. Numerical procedure

This study uses a ®nite di�erence method to solve
the spatially ®ltered Navier±Stokes equations and a

staggered mesh with a pressure-smoothing technique.
The discretion of the convection terms is a major
source of numerical error in LES calculation. Thus, it
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is very important to choose a proper scheme to discre-
tizes the convection terms.

Lower-order numerical schemes, such as the upwind
scheme, are very stable. Unfortunately, this scheme
generates an unacceptable numerical error that is im-

portant for LES simulations. On the other hand, it is
well known that higher-order schemes, such as the cen-
tral di�erencing scheme, can exhibit oscillation beha-

vior. The central scheme is unstable for numerical
solutions. However, the central di�erencing scheme
holds second-order accuracy, and can also satisfy the

®lter function symmetry law [19]. Furthermore, many
researchers have obtained satisfactory results using the
second-order central scheme for the convection terms
in the LES. Though there are many high-order

schemes available, these schemes are not well tested
and they may not satisfy the ®lter function symmetry
law.

Therefore, the present study discretizes all spatial
terms with the second-order central di�erencing
scheme. A second-order explicit di�erencing scheme

(Explicit Adams±Bashforth Scheme) is used to discre-
tize time. The overall accuracy of the scheme is still
second-order. For example, the velocity, v�, is calcu-

lated by,

v� ÿ vn

Dt
� 3

2

�ÿ grad � P� �n� nSGS �Dvÿ �v

� r�v	nÿ1
2

�ÿ grad � P� �n� nSGS �Dv

ÿ �v � r�v	nÿ1 �30�

with the following Poisson equation for the scalar po-
tential j:

r 2j � ÿdiv � v� �31�
and,

vn�1 � vn � grad � j �32�

Pn�1 � Pn ÿ 1

Dt
j �33�

The vn�1 can be explicitly solved from the above
equations. The solving procedure is called simpli®ed
maker and cell (SMAC) method [20]. The solution of
the Poisson equation is by the strong-implicit pro-

cedure (SIP) [21].

4. Applications to indoor air¯ow studies

This paper applies the FDSM model to indoor air-
¯ow simulations. Indoor air¯ow can be divided into

Fig. 2. Comparison of predicted and measured results at

y � AC=2 section. (a) air velocity, (b) air temperature, and (c)

turbulent energy.
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forced, natural and mixed convections. For example,
natural ventilation of a building is forced convection.

Winter heating in a room by a baseboard heater is
natural convection. Summer cooling in a room by an
air-conditioner is mixed convection. In order to verify

the ability of the FDSM model for all the three types
of convection ¯ows, the following sections show the
results of LES simulations.

4.1. Natural convection

The investigation has selected the natural convection
¯ow in a cavity as shown in Fig. 1(a). Cheesewright

[22] has measured the air velocity, temperature, turbu-
lent energy, and heat transfer in the cavity. Although
the cavity is not the same as a room, the ¯ow charac-
teristics are similar to those in a room. The simple ge-

ometry eliminates many potential errors, such as those
caused by the complex geometry of a baseboard hea-

ter. This would allow us to identify the reasons, if
there are discrepancies between the computed results

and measured data.
Since the natural convection consists of both turbu-

lent and laminar ¯ow, the ¯ow is very challenging for

the LES simulation. This study uses the SM �CS � 0:1
and CS � 0:2� and FDSM models to predict the distri-
bution of air velocity, temperature, and turbulent

intensity.
Fig. 1(a) shows the cavity geometry, height AC =

2.5 m, width AB = 0.5 m, and depth = 0.5 m. The

temperature di�erence between warm and cold walls,
Dy, was 45.88C K (left wall temperature, y1, was
68.08C, and right wall temperature, y2, was 22.28C).
All other walls were insulated. The ¯ow corresponded

to a Rayleigh number (Ra ) of 5:0� 1010, where the Ra
is de®ned as

Ra � �y1 ÿ y2 �gH 3

na
�34�

Fig. 3. The forced convection ¯ow in a room. (a) room geometry and (b) average air velocity on the center plane by the FDSM.
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The computations used no-slip velocity condition on

all the walls. The meshes employed were 62� 62� 12

for the height (x ), width ( y ), and depth (z ) directions,

respectively. The time step Dt � 0:0002 s.

The computation used a zero initial air velocity and

uniform 45.18C air temperature for the whole ¯ow

domain. When the ¯ow becomes statistically steady,

the averaging technique is used to obtain the mean

value of the computed parameters, such as average air

velocity and temperature. The averaged time is about

120 s.

Fig. 1(b)±(d) show the distributions of the average

air velocity, average air temperature, and instan-

taneous model coe�cient C with FDSM at the center

section (the depth is 0.25 m), respectively. The velocity

®eld is asymmetric. The hot wall generates an upward

¯ow near the wall and the cold wall a downward ¯ow.

The velocity in the center region of the cavity is gener-

ally small. The instantaneous C has a very large vari-

ation in the space. In the near wall and central region,

the C approaches zero, where the ¯ow is close to lami-

nar.

Fig. 4. Comparison of predicted and measured results on the center plane. (a) Average velocity pro®le at x � 1H, (b) average vel-

ocity pro®le at x � 2H, (c) velocity ¯uctuation pro®le at x � 1H, and (d) velocity ¯uctuation pro®le at x � 2H:
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Fig. 2 compares the predicted and measured results
in the cavity at y = AC/2. The performance of the SM

with the two di�erent coe�cients was very poor. The
SM model over-predicted the peak velocity near the
walls by 85%, as shown in Fig. 2(a), compared with

the experimental data. The main reason for the discre-
pancy is that the SM cannot predict the laminar ¯ow
near the wall and central region, although we have

used the damping function for the near-wall laminar
e�ect. The computed velocity pro®le with the FDSM
agrees rather well with the experimental data. The

FDSM is able to predict the ¯ow structure as shown
in the C distribution (Fig. 1(d)).
As reported by Cheesewright [22], the top and bot-

tom walls were not well insulated in the experiment.

The heat loss to the lab environment led to a lower
mean air temperature in the cavity. As a result, the
predicted mean air temperature in the cavity is higher

than the measured data as illustrated in Fig. 2(b). All
the computations have predicted a reasonable tempera-
ture distribution.

The paper calculates the turbulent energy as k��u 0 2
� v 0 2 � w 0 2�=2: Fig. 2(c) compares the computed k
pro®les with the experimental data. The SM model

over-predicted the turbulence energy by nearly 10
times. Since the SM used a constant C and turbulent
energy is related to the C, the SM cannot predict cor-
rectly the turbulent energy pro®le. The performance of

the FDSM is better than that of the SM, although it
still over-predicts the turbulent energy, especially in the
near wall region. As can be seen in Fig. 1(c), the C

varies signi®cantly in the near wall region.

4.2. Forced convection

For forced convection ¯ow, the investigation used
the case with experimental data from Nielsen [23]. The

experiment used a scale model to simulate indoor air-
¯ow as shown in Fig. 3(a). The size of the model is

W=H � 1:0, L=H � 3:0: The inlet height is
hin=H � 0:056, and outlet hout=H � 0:16: The width of
the inlet and outlet is the same as the model width.

The ¯ow Reynolds number was 5000, based on the
inlet height. The computation used uniform air velocity
pro®le at the inlet and zero gradient conditions at the

outlet for air velocity. Simulations used the SM and
FDSM. The SM is without the damping function,
because the bulk Reynolds number was high. A wall

function [24] was used for the walls. The wall function
assumed the following instantaneous velocity pro®le
near the walls:

u� � y�
�
y� < 11:6

	
u � 8:2y�1=7

�
y� > 11:6

	
The meshes employed were 46� 32� 16 for the height
(x ), width ( y ), and depth (z ) directions. The grid size
is determined for an acceptable numerical accuracy

with a reasonable computing time. The dimensionless
time step DT �� DtUin=hin� is 0.002 in the calculations.
In order to save CPU time, we used a k±e model pro-
gram to calculate this case with same grid ®rst. Then,

the LES simulation started from the results of a k±e
model prediction. When the calculation reaches statisti-
cally steady state, the averaging is performed over 800

dimensionless time. The calculation with the SM used
0.16 for the CS, this CS is a ``better'' value for indoor
air prediction as tested by Murakami et al. [16].

Fig. 3(b) shows the averaged velocity distribution in
the center section by the FDSM. The model can pre-
dict the re-circulation in the upper right corner. Chen

[3] shows that none of the ®ve k±e models he tested
was able to predict the re-circulation.
Fig. 4 compares the computed pro®les of the vel-

Fig. 5. The mixed convection ¯ow in a room. (a) Room geometry, (b) average velocity vectors obtained from the experiment [23],

and (c) average velocity vectors computed by the FDSM.
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Fig. 6. Comparison of the predicted and measured results on the center sections. (a) Average velocity at y � 0:502 m, (b) average

temperature at y � 0:502 m, (c) average velocity at x � 0:502 m, (d) average temperature at x � 0:502 m, (e) average turbulent

energy �k1=2� at x � 0:502 m, and (f) average turbulent energy �k1=2� at y � 0:502 m.
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ocity component in X direction, U, with the exper-
imental data at X � 1H (Fig. 4(a)) and X � 2H

(Fig. 4(b)), respectively. Again, the SM performs
poorly for this case. The subgrid scale viscosity �nSGS�
of the SM was under-predicted, and the models over-

predicted the velocity at the jet region. On the other
hand, the results with the FDSM agree well with the
experimental data, except in the jet region. When the

subgrid scale viscosity �nSGS� is over predicted, the vel-
ocity is smaller.
The problem of predicting the subgrid scale viscosity

in the jet region is also re¯ected in the velocity ¯uctu-
ation pro®le as shown in Fig. 4(c) and (d) for X � 1H
and 2H sections, respectively. The under-prediction of
the subgrid scale viscosity in the jet region by the SM

implies a lower turbulence level as shown in Fig. 4(c)
and (d). In contrast, the over-prediction of the sub-
grid-scale viscosity in the jet region by the FDSM

leads to a higher turbulence level. Furthermore, the
coarse mesh distribution for the computations may
also be attributed to the discrepancies.

4.3. Mixed convection

The present investigation used the case from Baly et
al. [25] to study mixed convection ¯ow in a room, as
shown in Fig. 5(a). Baly et al. [25] measured air vel-

ocity, temperature, and turbulent energy for the case.
The geometry of the test rig was H � 1:04 m long, L �
1:04 m wide, and D � 0:7 m deep. Again, this is a

scale model of a room. The inlet height �hin� was 0.018
m, the supply air velocity �Uin� 0.57 m/s, and supply
air temperature �Tin� 158C. The outlet height was 0.024

m. The model had a ¯oor heating system that kept the
¯oor temperature �Tf� to be 358C. All other walls tem-
perature �Tw� was 158C. The corresponding Archi-
medes number, Ar �Ar � bghinDT0

U 2
in

), is 0.0036 and

Reynolds number, Re �Re � Uinhin

n ), is 678.
The computations used no-slip velocity condition on

all the walls. The meshes employed were 62� 62� 12

for the height (x ), width ( y ), and depth (z ) directions.
Fig. 5(c) shows the averaged air velocity distribution

by the FDSM. Compared with the measured distri-

bution (Fig. 5(b)), the air¯ow patterns are almost the
same. The LES simulation shows a re-circulation in
the left-bottom corner, but the re-circulation was not
observed by the experiment. It is not clear if this is due

to the insu�cient ®ne measuring points or due to the
model used.
Fig. 6 further compares the predicted mean air vel-

ocity, temperature, and turbulent energy by the SM
�CS � 0:16� and FDSM with the experimental data at
two center sections at Y � 0:35 m. Fig. 6(a) and (b)

show that the two subgrid scale models give very simi-
lar air velocity pro®les. The predicted velocity pro®les
agree reasonably with the experimental data.

However, Fig. 6(c) and (d) indicate that the pre-
dicted air temperature is about 1.5 K higher than the

measured one, although the shape of the predicted
temperature pro®les is the same as the measured one.
Although the computations did not use a wall function

for the solid boundaries, the models may over-predict
the heat transfer from the ¯oor or under-predict the
heat transfer to the other walls. Since no detailed

measurements on the heat transfer were available, it is
di�cult to identify the actual cause of the discrepan-
cies. In addition, the Prandtl number of the subgrid

scale may not be correctly modeled.
Fig. 6(e) and (f) illustrate that the computed turbu-

lent energy pro®les do not agree well with the exper-
imental data. The performance of the FDSM model is

slightly better than that of SM �CS � 0:16).

5. Conclusions

The paper proposes a ®ltered dynamic subgrid scale
model (FDSM) for the large eddy simulation of com-

plex ¯ow without a homogeneous direction, such as
air¯ow with natural, forced, and mixed convection in a
room. The computed results have been compared with

those of the Smagorinsky model (SM) and the exper-
imental data available from the literature.
The performance of the SM model for such ¯ows

was generally poor. It failed to predict even the mean
¯ow parameters, such as mean air velocity and tem-
perature. The model may over predict the turbulence
level by one order.

The FDSM model can predict the air¯ow. The
agreement between the computed results and the
measured data is generally good. The model deter-

mines much better mean air¯ow parameters than tur-
bulence parameters and heat transfer.
The results show that the large eddy simulation with

the FDSM has a good potential to simulate indoor air-
¯ow.
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